Earth Science Archive

The Earth Science Branch conducts research of the Earth as a system with a focus on lightning and precipitation processes, weather and climate variability, monitoring fluxes of heat and water from the surface, and associated data management and mining activities for scientific discovery and applications for societal benefit.

GLM Provides New Perspective on the Intensification and Weakening of Hurricane Dorian

The Geostationary Lightning Mapper (GLM) detected a considerable increase in the number of lightning flashes in Hurricane Dorian's inner core as the storm reached its peak intensity, along with a marked decrease in both lightning flash area and flash energy.

dorian-vis-zoom-image (1)

Previous research indicates that lightning can be a useful predictor of tropical cyclone intensification. In particular, an increase in the number of lightning flashes usually precedes storm intensification. This is not always the case, however; sometimes significant lightning outbreaks occur in weakening storms. Hurricane Dorian (2019) is an example of the latter case: as the storm reached its peak intensity and began to weaken, there was a marked increase in the number of lightning flashes within the inner core. Given these conflicting signals, forecasters must analyze ancillary datasets to determine whether or not a lightning outbreak is a harbinger of storm intensification.

A great advantage of GLM is that it provides continuous monitoring of not only the number of lightning flashes, but also additional flash characteristics such as average flash area and total optical energy. During Hurricane Dorian's rapid intensification, an outbreak of inner-core lightning occurred that was characterized by large average flash area and high total optical energy. As the storm reached its peak intensity and began to weaken, a second lightning outbreak occurred, with markedly smaller average flash area and lower total optical energy. Lightning flashes in the weakening period tended to orbit the eye, following cloud swirls that were detected in GOES-16 Advanced Baseline Imager visible imagery. These cloud swirls are known to be associated with processes that can inhibit hurricane intensification while simultaneously strengthening localized convective updrafts in the eyewall. An increase in the number of these strong but isolated convective updrafts is consistent with the increased number of lightning flashes and decreased averaged flash area and total optical energy observed during Dorian's weakening phase.

These marked changes in lightning characteristics in Hurricane Dorian, which are consistent with physical processes related to convection, suggest that average flash area and total optical energy observed by GLM could provide valuable insight into a hurricane's future intensity evolution. This will be investigated by a team from NASA SPoRT, in collaboration with scientists at Texas Tech University and the NOAA/NWS National Hurricane Center, using data from multiple hurricanes observed during the 2018 and 2019 Atlantic hurricane seasons.

Click here to view an animation of Hurricane Dorian with GLM Flash Locations:

SERVIR Hubs and Science Coordination Office Respond to COVID-19

Three of SERVIR’s regional hubs (SERVIR-Eastern & Southern Africa, SERVIR-West Africa and SERVIR-Amazonia) have either begun providing mapping support in response to COVID-19 or are exploring methods for doing so.

At the request of its Member States, the Regional Centre for Mapping of Resources for Development (RCMRD), host organization for SERVIR-Eastern & Southern Africa, has launched a dashboard to map confirmed cases, deaths, new cases, recovered cases, and active cases. The dashboard also maps vulnerable populations at the county / district / province level by incorporating demographic & social economic datasets. The RCMRD also responded to a request from the Kenya Ministry of Agriculture, Livestock, Fisheries & Irrigation (MOAFLI) about evaluating agriculture impacts of COVID-19 using Earth observation data.

On behalf of the AfriGEO (African Group on Earth Observations) Secretariat, RCMRD also just initiated an AfriGEO COVID-19 support group, to coordinate Earth observation-related support being provided to respond to the current pandemic, among the AfriGEO member entities.

SERVIR-West Africa, at the Agriculture, Hydrology and Meteorology (AGRHYMET) Regional Center, is currently working on developing a dashboard similar to RCMRD’s, covering West Africa countries.

SERVIR-Amazonia consortium partners have also been exploring COVID-19 impacts: Conservación Amazónica (ACCA) has developed a viewer looking at declining NO2 emissions over Peru, while a member of Dr. Naiara Pinto’s (NASA JPL) Applied Sciences Team has also been looking at NO2 emissions, at the regional level. SERVIR Subject Matter Expert (SME) Dr. Josef Kellndorfer (Earth BigData) has set up an internal site for SERVIR-Amazonia to access various data and informational resources.  Various SERVIR Applied Sciences Team scientists are also looking at submitting proposals to examine the impacts of COVID-19 using Earth observation data.

Taal's Eruption Illuminates Volcanic Lightning for Science


Recently Chris Schultz was interviewed by Dr. Alka Tripathy-Lang of Temblor about the driving physical mechanisms behind the awesome display of lightning during the Taal eruption in the Philippines on 1/12/20.  Schultz discussed the primary reasons for extensive upward lightning from the volcano’s cone, and how the volcanic ash plume was able to generate large amounts of lightning in such a short period of time. Lightning observations from volcanic events can help us better understand the relationship between vertical motion, turbulence, and lightning generation, which is a primary metric to identify intense convective clouds. This article was done in collaboration with colleague Dr. Alexa van Eaton of the USGS Cascades Volcano Observatory.

To read the article, go to:

Evaluating Warm and Cold Rain Processes in Cloud Microphysical Schemes Using OLYMPEX Field Measurements

This research evaluated the ability of several bulk microphysical parameterizations (BMPs) in the Weather Research and Forecasting (WRF) model to forecast heavy precipitation from Atmospheric River (AR) events during the Olympic Mountain Experiment (OLYMPEX) around western Washington State. It found that ARs were characterized by a prefrontal period of stable, terrain-blocked flow with an abundance of cold rain over the lowland region followed by less stable, unblocked flow with more warm rain over the windward Olympic slopes, and that WRF simulations (1-km grid spacing) showed underpredictions in precipitation by 19-36% in the Morrison (MORR) and Thompson (THOM) BMPs and 10-23% in the Predicted Particle Properties (P3) BMP, with the largest underpredictions over the windward slopes during the less stable conditions.


Additionally, intensive field measurements revealed several important processes related to the BMPs that led to the differences in simulated precipitation, including: Prognostic single ice category parameterization in the P3 scheme promoted a more realistic evolution of rimed particles and larger cold rain production, which led to the lowest underpredictions in precipitation among the schemes; Efficient melting processes associated with the production of nonspherical ice and snow in the P3 and THOM BMPs supported a realistic transition from ice-phase to liquid-phase fall speeds compared to the spherical snow assumption in MORR; and, All the BMPs underpredict the contribution of warm rain processes to the surface precipitation, which is at least partly explained by too weak of condensational and collisional growth due to the neglect of turbulence parameterizations within the schemes.

This study encourages future BMP validation work to focus efforts on evolving the prognostic riming approach within the P3 scheme, implementing turbulence parameterizations within BMPs, and pushing the model resolution envelope to better understanding how resolution can impact precipitation forecasts in areas of complex terrain.

To find out more, go to:

Disasters Team Helps NOAA and National Weather Service with Severe Weather Damage Assessments

Decatur Tornado

On 4/12/20, a significant severe weather outbreak occurred across the southeastern United States, including two major (EF4) tornadoes impacting Mississippi, a tally of 25 tornadoes across central Alabama, and continued severe weather and tornadoes through Georgia and the Carolinas.

Team members from the MSFC Earth Science Disasters Team leveraged past collaborative experience with NOAA’s National Weather Service to obtain polar-orbiting satellite imagery from the European Space Agency’s Sentinel-2, USGS/NASA Landsat 8, and commercial provider Maxar/DigitalGlobe imagery obtained through collaboration with the USGS Hazards Data Distribution System.  Imagery were processed into true color and other formats for incorporation into the NOAA/NWS Damage Assessment Toolkit, a project collaboration previously supported through NASA’s Applied Sciences Program and highlighted in this month’s issue of the Bulletin of the American Meteorological Society.

Virtual collaborations between team member Lori Schultz (UAH) and NWS meteorologists in the Morristown, TN office (serving impacted city of Chattanooga, TN) and Columbia, SC led to discussions around the provided data, and use of the data by partners revealed a portion of a tornado damage track that may have otherwise been missed due to limited road network availability during the in-person ground survey.  As an ongoing research activity, team members Andrew Molthan and Jordan Bell further explored the use of synthetic aperture radar (SAR) imagery from the ESA Sentinel-1 platform and plan to continue research in collaboration with ongoing competitively funded ROSES proposals.  The team plans to explore how SAR can complement optical land surface remote sensing in observations of damage areas.

Mapping Lightning Strikes from Space

Recently Chris Schultz was interviewed by Dr. Richard Simla of  the American Geophysical Unions's  (AGU's) magazine, EOS, as part of a team of authors about the implementation of the Geostationary Lightning Mapper (GLM) within the National Weather Service (NWS).  This was a result of Schultz’s participation in the development of Meteorological Imagery for the Geostationary Lightning Mapper (GLM) to display GLM data in a uniform matter for public and private consumption.  In the article, Schultz specifically discusses the impact of GLM to lightning safety to improve public awareness, as well as, the engagement the team has had with NWS personnel to continue developing uses of GLM for forecasting and warning applications. This effort and publication spanned government (NOAA/NWS, NASA), academia, and private sector.

Read the article at:


SERVIR Hubs Collaborate with Governments to Address Illegal Mining

SERVIR hub team members participating in the SERVIR Annual Global Exchange (SAGE) find opportunities to exchange ideas and lessons learned, especially during sessions that showcase services that might address common challenges across several regions.  One such opportunity occurred during SAGE 2020 in Siem Reap, Cambodia, when Mr. Sidney Novoa, Project Manager for SERVIR-Amazonia hub consortium partner Conservación Amazónica (ACCA) in Peru, and Dr. Foster Mensah, Executive Director at the Center for Remote Sensing and Geographic Information Services (CERSGIS) in Ghana, exchanged ideas and discussed their respective services focused on illegal mining detection. Ghana is a focus country for the SERVIR-West Africa hub, while Peru is one of the focus countries served by SERVIR-Amazonia. Both countries are facing common threats to fragile ecosystems from illegal gold mining. In close collaboration with government ministries in the two countries, SERVIR-Amazonia and SERVIR-West Africa are developing maps and analyses using Landsat, Sentinel-1, and Sentinel-2 data to better monitor illegal gold mining activities, as well as supporting forest conservation and restoration. The SERVIR Science Coordination Office (SCO) has enabled the collaboration between the two hubs through collaborative work to demonstrate utility of the tools across the ocean.  A recent article detailed current activities and highlights potential upcoming collaborations between the two hubs.

Read the article at:

SERVIR Activities Regarding Locust Outbreak

Through the SERVIR partnership between USAID and NASA, West and East Africa hub organizations -- the Agrometeorology, Hydrology and Meteorology (AGRHYMET) Regional Center in Niger and the Regional Centre for Mapping of Resources for Development (RCMRD) in Kenya--are working with the UN Food and Agriculture Organization (FAO) on satellite data improvements to the global locust monitoring system and damage assessment efforts. Important technical improvements will be made to the FAO system by integrating higher resolution satellite- and model- derived soil moisture data that are critical to targeting areas for control measures.  As part of this effort, the SERVIR Science Coordination Office (SCO) at MSFC conducted a concerted two-week “locust sprint” (March 2-13) to evaluate the potential of satellite data and models to: 1) inform locust outlooks/provide early warning; 2) provide real-time Earth Observation-based situational awareness; and 3) support damage assessment following a locust outbreak.  The knowledge gained and outputs developed during this two week sprint will be used by FAO and other groups such as the World Food Programme to improve pest management and support food security in Africa.

Detecting Convective Cold Pools from Space

Cold Pools

The image shows global gradient feature (GF; i.e., cold pool) characteristics for 12 years of observations (2007-2018) in a 0.5-degree grid box showing (a) number distribution of GFs, (b) TRMM monthly precipitation (millimeters per month) climatology, (c) GF size (square kilometers) and (d) TRMM 3B42 precipitation (millimeters every 3 hours) within GFs.

To read the full article, go to:

Dr. Timothy J. Lang co-authored a paper, titled “Identifying and Characterizing Tropical Oceanic Mesoscale Cold Pools using Spaceborne Scatterometer Winds,” that was recently accepted for publication in the Journal of Geophysical Research: Atmospheres. The paper documents the creation of the first-ever satellite-based, global, mesoscale cold pool climatology. Cold pools are pockets of cooler air near the surface that are produced from convective storms, and they play an important role in initiating and sustaining new convection. Using data from the Advanced Scatterometer (ASCAT) on a European satellite, Dr. Lang and his fellow authors from the University of Illinois and University of Alabama in Huntsville developed a new cold pool identification technique using scatterometer winds over the ocean to identify wind gradients - termed gradient features. The gradient feature technique was rigorously validated using ocean buoy measurements as well as an atmospheric model simulation. The gradient features’ (i.e., cold pools’) global spatial distribution matches well with oceanic precipitation observed by NASA's Tropical Rainfall Measurement Mission. The resulting database will enable scientists to study the role that cold pools play in modulating tropical convection, including important global-scale weather and climate phenomena such as the Madden-Julian Oscillation.

SERVIR Science Coordination Office (SCO) Team Member, Africa Flores, Receives Geospatial World Leadership Award

Ms. Africa Flores, Regional Science Coordination Lead for SERVIR-Amazonia in the SERVIR Science Coordination Office (SCO), has been selected by the Geospatial World Leadership Awards Jury to receive the Woman Geospatial Champion of the Year Award, which will be presented at the Geospatial World Forum, during a Gala Dinner and Awards Night. The Geospatial World Forum, to be held this year in Amsterdam, will be attended by over 500 organizations from 70 countries around the world. The awards jury cited her career focus on ‘supporting decisions for ecosystem analysis based on Earth observation data and deriving actionable strategies for addressing environmental concerns at [NASA SERVIR]’ and her ‘passion towards facilitating utilization of geospatial data and satellite imageries across different environmental programs for a healthy planet’. Flores also serves as the Land Cover Land Use & Ecosystems Theme Lead for the SCO. Originally from Guatemala, she supported SERVIR’s first hub as part of the SERVIR-Mesoamerica team in Panama, beginning in 2008. Flores has been with the SERVIR SCO since 2011, beginning as a graduate research assistant with the University of Alabama in Huntsville (UAH).  She received a Master's Degree in Earth System Science from UAH in 2013. Starting in 2018, she led a two-year collaboration between NASA SERVIR and SilvaCarbon that culminated in the publication of the Synthetic Aperture Radar (SAR) Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation. Released in April of 2019, the SAR Handbook has been downloaded over 300,000 times in 170+ countries.

A first look at GLM observations of the supercell thunderstorm responsible for tornadoes in Tennessee on March 2-3 2020

Marshall scientist, Dr. Christopher Schultz, recently provided the first look at Geostationary Lightning Mapper (GLM) observations of the supercell thunderstorm responsible for the March 2-3, 2020 tornadoes in Tennessee.  His analysis shows that lightning served as a good precursor to deadly severe weather in the Central Tennessee area on those dates.


This image shows time trend information of the maximum flash extent density value aggregated over a five-minute period, updated every one minute between 0445 UTC and o840 UTC from the GLM.

Lightning rates spiked prior to key stages of severe weather production in the thunderstorm responsible for producing damaging hail and deadly tornadoes across Central Tennessee.  The jump in lightning signifies strengthening vertical motion in the parent storm.  This vertical motion is key to the generation of severe weather. There was also a lull in lightning activity during a long track 60 mile tornado that started in Nashville TN and moved eastward, which has been observed in other tornadic storms.

Advanced Microwave Precipitation Radiometer Completes Deployment to Winter Storm Field Campaign

The Advanced Microwave Precipitation Radiometer (AMPR) successfully completed operations as part of the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS), and returned to Armstrong Flight Research Center (AFRC) on board the NASA ER-2 aircraft. For IMPACTS, AMPR coordinated operations with multifrequency radars and another radiometer in order to provide state-of-the-art retrievals of microphysical information within significant northeastern and central US winter storms. These observations will enable new scientific insights into how snow bands form in these storms, and how to improve measurements of snow from space. During the transit back to AFRC, the new MIDAS (MSFC Instrument Data Architecture for Science) data system was installed on AMPR and performed nominally in its first flight test. Timothy Lang (ST11) served as an IMPACTS mission scientist, while Max Vankeuren (ES63), Eric Cantrell (ES63), Douglas Huie (UAH), Corey Amiot (UAH), and Amanda Richter (UAH) operated AMPR in the field and gathered approximately 60 hours of science flight data. AMPR will fly again for IMPACTS in 2021 and 2022, with the MIDAS-AMPR data system, which reduces risk while providing new customizable scanning capabilities.


The image shows AMPR uncalibrated brightness temperature observations during a GPM underflight on 1 February 2020. (a) 10.7 GHz. (b) 19.35 GHz. (c) 37.1 GHz. (d) 85.5 GHz. The underflight occurred near a developing cyclone over the ocean, and warmer brightness temperatures indicate heavier precipitation, except in the heaviest precipitation near 36 degrees latitude and -73 degrees longitude, where colder brightness temperatures at 37 and 85 GHz indicate ice scattering.

Interagency Implementation and Advanced Concepts Team (IMPACT) Contributions Highlighted in Earth Science Data Systems (ESDS) Annual Report

In their annual report for 2019, NASA's Earth Science Data Systems Program highlighted major scientific and technical contributions from the IMPACT team at MSFC to benefit the Earth Science community.  Activities highlighted for their contributions to Earth Science include: the Airborne Data Management Group efforts to partner with five NASA Earth Venture Sub-orbital 3 (EVS-3) projects to facilitate sharing of their collected data with the community, including ongoing and upcoming collections made during the Investigation of Microphysics and Precipitation for Atlantic Coast – Threatening Snowstorms (IMPACTS) field campaign with MSFC participants.  Efforts in the Satellite Needs Working Group helped NASA understand community needs for observations and data products, leading to new production of the Harmonized Landsat and Sentinel (HLS) capability to combine mission outputs from NASA and ESA.  Data access facilitated through the Common Metadata Repository effort ensure that data documentation allows routine and efficient access to NASA mission data and products.  The National Climate Assessment benefits from additional climate-relevant keywords developed in collaboration with the U.S. Global Change Research Program.  Scientists involved in algorithm development will have new opportunities to collaborate through the Algorithm Publication Tool, which will allow them to rapidly generate documentation to accompany code for new and improved algorithm development.  Ongoing Multi-Mission Algorithm and Analysis Platform (MAAP) activities represent collaboration between NASA and the European Space Agency to combine data, algorithms, and satellite measurements emphasizing tools for satellite, aerial, and ground-based biomass estimation.  Continued efforts in Deep Learning and Artificial Intelligence have developed new means of rapidly mapping the extent of wildfire smoke, helpful in areas of public health, disaster response, weather forecasting, and pollution studies.

For more details, check out the comprehensive ESDS 2019 Program Highlights online:

NASA SERVIR Helps Tackle Air Pollution Challenges at Smogathon Thailand 2020

USAID and NASA/SERVIR-Mekong, in collaboration with the U.S. Department of State’s Young Southeast Asian Leaders Initiative and the Royal Thai Government’s Pollution Control Department, hosted “Smogathon Thailand 2020”, February 8-10, 2020 in Chiang Mai.  Students and young professionals worked for three days on projects to help address air pollution challenges in Thailand and were challenged to use the SERVIR-Mekong air quality monitoring and forecasting tool co-developed with the Royal Thai Government’s Geo-Informatics and Space Technology Development Agency (GISTDA), and Pollution Control Department.  SERVIR SCO and SERVIR Global team members participated in the smog-a-thon as judge and mentors. The winning project by the “No Grant SMOG” team developed a board game using NASA Fire Hotspot data to educate children on smog, its causes, and preventative measures to help raise awareness about the issue to the public.

An article on the event can be found at


Flash Characteristics and Precipitation Metrics of Western U.S. Lightning-Initiated Wildfires from 2017

Marshall scientist, Dr. Christopher Schultz examined 95 lightning-initiated wildfires and 1170 lightning flashes in the western United States between May and October 2017 to characterize lightning and precipitation rates and totals near the time of ignition. They key finding from this study was that both instantaneous rainfall rate and total rainfall are statistically significant parameters that can indicate where lightning initiated wildfire starts might occur in real-time. These findings suggest that it is necessary to revise some operational wildfire guidelines using flash densities that are way too large for ignition recognition.  Both instantaneous and 24-hour precipitation information will be useful for real-time identification of wildfire potential from lightning, especially given that 48% of fires are identified 1 day or more after the lightning ignition occurs.

Read the full article at

Using the Geostationary Lightning Mapper (GLM) to Create Rapid-Scan Visible Imagery

NASA, Marshall Space Flight Center (MSFC), and University of Alabama at Huntsville Researchers, led by Dr. Daniel Cecil, used GOES-R Series Geostationary Lightning Mapper (GLM) products to create rapid-scan visible imagery for two test cases. GLM is normally used for mapping lightning locations, flash rates, and flash energies, not for visible imagery. But it does take visible-band (0.774 micron) pictures of its field of view before applying filters to find the lightning flashes. A visible image is transmitted from the satellite every 2.5 minutes. Those images are not calibrated or geolocated. We applied a basic calibration and geolocation for two test cases, then created animations.

The imagery from GLM has coarse (~10 km) horizontal resolution compared to ABI (~1 km), but in our test cases it does depict relevant structures in a severe thunderstorm outbreak, including overshooting cloud tops, low-level outflow boundaries, convective initiation, and atmospheric flow directions at multiple vertical levels. In another test case, it depicts rapid expansion of an ash cloud from a deadly volcanic eruption in Guatemala


Rapid-scan visible imagery from GLM can enable research and monitoring of rapidly evolving, high impact events such as severe thunderstorms and volcanic eruptions. It can also potentially enable derivation of atmospheric flow fields (wind velocity vectors) at cloud-top levels. Another GOES instrument, the Advanced Baseline Imager (ABI), is normally used for visible imagery. ABI provides scans of the Continental US and adjacent waters every five minutes, and scans of selected smaller-scale domains (up to two per satellite) every one minute. Outside of these regions, the "full-disk" scan is limited to every ten minutes (previously every 15 minutes, before April 2019). 2.5-minute imagery from GLM would provide a rapid update that is not normally available for Central and South America, or for large parts of the Atlantic and Pacific Oceans. This includes thunderstorm-prone regions in South America, volcanoes along the Andes and in Central America, and the Central Atlantic where hurricanes make their approach toward Caribbean islands, Bermuda, or eventually the US.

Advanced Microwave Precipitation Radiometer (AMPR) has excellent performance in latest deployment.

The Advanced Microwave Precipitation Radiometer (AMPR) flew approximately 140 hours in the Cloud, Aerosol, and Monsoon Processes Philippines Experiment (CAMP2Ex), with significantly improved initial data quality relative to its last deployment on the NASA P-3B in 2016. This will enable novel clear-air geophysical retrievals, such as water vapor vertical profiles, as well as ultra-high-resolution cloud microphysical retrievals in coordination with the triple-frequency radar used in CAMP2Ex.


AMPR remotely senses passive microwave signatures of geophysical parameters from an airborne platform and the instrument’s low noise system provides multi-frequency microwave imagery with high spatial and temporal resolution. The purpose of CAMP2Ex is to deconvolute tropical meteorology and aerosol science at the meso-b to cloud level. It’s best thought of as the precursor suborbital field experiment to the planned Aerosol and Cloud-Convection Precipitation (ACCP) mission. CAMP2Ex results will help define the fundamentally new science that ACCP can provide.


The AMPR team, led by Marshall’s Dr. Timothy Lang, combined a microwave active-passive remote sensing system with APR-3 and was also co-located with AVAPS. Samples were taken at a variety of altitudes. AMPR featured a new custom multifrequency radome that, when coupled with new filters for APR-3 Ka-band, provided vastly improved initial data quality from ORACLES 2016 deployment. Sampling was performed multiple times per flight during select cloud overflights. When coupled with APR-3, the instrument provided ultra-high-resolution microphysical retrievals along a nadir curtain in clouds. The instrument also enabled evaluation and improvement of calibration using air-cooled cold load.


AMPR's overall excellent performance during the campaign, coupled with the novel flight and instrument scanning maneuvers used during the campaign, will enable unique retrievals of geophysical information relevant to ACCP science, such as vertical profiles of atmospheric water vapor and combined active/passive microwave retrievals related to cloud microphysical processes.

Key Findings from a Simple Reanalysis Proxy for US Cloud-to-Ground Lightning

Researchers, including Marshall’s William Koshak, published the results of a simple reanalysis proxy for US cloud-to-ground lightning. The reanalysis showed that in the cool season (November through April), negative CG flash counts across the continental United States (CONUS) are well correlated with CONUS lightning proxy CP (CAPE X Precipitation) values, but CP proxy performance during the warm season (May through October) is worse.

The relatively strong relations between CP and CG flash counts in some regions and times of the year at daily resolution provide a benchmark for more complex proxies and suggest that proxy-based extended- and long-range prediction of lightning activity may be feasible to the extent that precipitation rate and CAPE can be predicted.

A paper by Romps et al. (2014) introduced a proxy CP (CAPE x Precipitation) for cloud-to-ground (CG) lightning over the continental US (CONUS). The paper received media attention since it pointed to an increase in CG strikes over CONUS under global warming conditions. However, the paper only conducted a one year period analysis. To more rigorously test the attributes of the CP proxy, our study analyzed CP for a 14 year period (2003-2016) using reanalysis data, thereby substantially improving the applicability and limitations of CP.

To read the full research article published in the International Journal of Climatology, click here:

Remote Sensing of Hail Damage Swaths

Intense thunderstorms can bring damaging winds and large hail that leave scars of damage to agricultural regions during the prime growing season. These hail damage swaths have frequently been observed through the use of satellite remote sensors, prominently optical instruments. A commonly used index for monitoring changes in and around suspected damaged areas is the Normalized Difference Vegetation Index (NDVI). NDVI values routinely decrease in and around the hail damage swath, sometimes significantly if the swath occurs late in the growing season when the vegetation is near maturity. The drawback to using optical data, however, is that the sensor can be restricted from viewing the surface depending on the sky and atmospheric conditions (i.e. clouds, diurnal cycle). Synthetic Aperture Radar (SAR) provides another opportunity to view the surface regardless of the sky condition and time of day.

The primary objective of this study looked to see if SAR could be used in aiding optical data in evaluating hail damage swaths. Using observations throughout the growing season, ESA's Sentinel 1A/1B SAR imagery in co- and cross-polarization is used to identify changes in backscatter of corn and soybeans damaged by hail during severe thunderstorm events in the early and late growing season across the central United States. While NDVI studies have routinely examined a decrease associated with damage, these events produced SAR signatures evident in the damage region but with direction of change believed related to vegetation structure and soil moisture conditions.

SAR Hail damage

This image shows: a) Sentinel-1 co-polarization (VV) intensity image from 12 August 2018; b) Same as a) but cross-polarization (VH); and a) Time series for NDVI for the damaged and background areas of corn crops identified by the 2018 Crop Data Layer (CDL). The black vertical line represents the approximate time the damaging thunderstorm occurred. Image b) is the same as a), but for soybeans. c) Time series of the co- and cross-polarizations for the damaged and background areas of the 2018 CDL identified corn damaged and background areas. d) Same as c) but for the 2018 CDL identified soybean areas.

In the U.S. every year, more than 10 billion dollars in insured losses is attributable to severe weather and 70% of that loss is due to hail. Hail damage and damage swaths are also not just confined to the United States. Argentina experiences intense thunderstorms and hail across their agricultural regions annually, as well. Remote sensing continues to be an technology increasingly used by all parts of the agricultural sector. During the growing season, it is not uncommon to go 5 to 7 days in between clear views of the surface, which limits the utility of optical instruments, a large percentage of the Earth Observation fleet. SAR provides another tool and can help fill in some of the information gaps caused by the limitations of optical instruments. Exploring methodologies and techniques to characterize these damage swaths and other intense thunderstorm related damage with data from NASA's upcoming L-band NISAR mission, will allow data to be easily inserted into existing workflows.

An article titled, "Complementing Optical Remote Sensing with Synthetic Aperture Radar Observations of Hail Damage Swaths to Agricultural Crops in the Central United States" has been accepted by the American Meteorological Society's Journal of Applied Meteorology and Climatology. The lead author of the article was Jordan Bell, Marshall Space Flight Center, with co-authors from the University of Alabama in Huntsville, Texas Christian University, and the University of Alaska Fairbanks.

The full article can be found at

SERVIR Science Coordination Office (SCO) Supports Synthetic Aperture Radar (SAR) Training around the World

Ms. Rebekke Muench of the SERVIR SCO supported a training on "Synthetic Aperture Radar for Forest Monitoring" led by Dr. Josef Kellndorfer (EarthBigData) at the Universidad Nacional Agraria la Molina (UNLM) in Lima, Peru, November 18th through 22nd, 2019. The training was provided as part of Dr. Kellndorfer's subject matter expert work to support the expansion of SAR to existing forest monitoring platforms in SERVIR-Amazonia partner organizations. This training also built upon the previous SERVIR Global capacity building effort, the SAR Handbook, to include the newest SERVIR hub. The 15 participants included individuals fro Asociacion para la Conservacion de la Cuenca Amonzonica (ACCA), UNLM, Ministerio del Ambiente, Servicio Nacional Forestal y de Fauna Silvestre, Comision Nacional de Investigacion y Desarrollo Aeroespacial, Ministerio de Cultura, Servicio Nacional de Areas Naturales Protegidas del Peru, and the Amazon Conservation Association. Technical skills developed in this workshop will feed directly into the forest monitoring efforts of ACCA, improving the timeliness of deforestation alerts across the region.

On January 13th through 15th, 2020, Ms. Helen Baldwin and Mr. Tim Mayer from the NASA SERVIR SCO led a workshop on using L-band SAR data to estimate forest stand height, hosted by SERVIR-Mekong in Bangkok, thailand. The 20+ participants came from six countries (Myanmar, Nepal, Thailand, Cambodia, Vietnam, and Laos), and represented eight organizations, including government departments such as the Cambodia Ministry of Environment, Universities such as the National University of Laos, and institutes involved in REDD+ (Reducing Emissons fro Deforestation and Forest Decredation) reporting such as Vietnam's Forest Inventory and Planning Institute (FIPI). This activity provided participants with an understanding of how to apply the method of estimating forest stand height that relies on temporal decorrelation as described in chapter four of the SERVIR's SAR Handbook, which has been downloaded over 300,000 times. Participants left the workshop with a concrete understanding of how to apply the techniques to their own countries for MRV (Monitoring, Reporting, and Verification) and land classifications. One participant stated that, "This training revolutionized my concept of boring and complex coding to a fun and powerful way of analyzing Earth bservation data in an understandable way."

You can find the link to the SAR Handbook at:

IMPACT Team Member Presents the Resilience community at 2019 GeoPlatform Community Meeting

Interagency Implementation and Advanced Concepts Team (IMPACT) member Ms. Jeanne Le Roux presented the Resilience Community to the attendees of the 2019 GeoPlatform Community Meeting. The Resilience Community is an interactive, topically-focused web portal to share web content, datasets, services, maps, applications, and tools relevant to environmental change and climate resilience.


The teams also collaborated together to incorporate key climate relevant datasets from the Climate Data Initiative (CDI) into, including relevant Earth observation data from NASA. The Resilience Community website was built over the past year by IMPACT in collaboration with GeoPlatform. The presentation discussed the process of building the community space as well as lessons learned from the experience.

The Resilience Community is available at

Marshall Lightning Mapping Array featured at International Workshop in Argentina

In November 2019, Dr. Timothy J. Lang traveled to Buenos Aires, Argentina to present at the Remote sensing of Electrification, Lightning, and Mesoscale/microscale Processes with Adaptive Ground Observations - Clouds, Aerosols, and Complex Terrain Interactions (RELAMPAGO-CACTI) Data Analysis Workshop. Marshall provided a Lightning Mapping Array (LMA), which measures the three-dimensional structure of lightning flashes, to RELAMPAGO-CACTI in support of validation of the GOES-16 (Geostationary Operational Environmental Satellite - 16) Geostationary Lightning Mapper (GLM). Dr. Lang spoke abut the success of the LMA deployment and showed initial results, which demonstrates how GLM detection efficiency varies as functions of thunderstorm life cycle and lightning flash type. During the trip, Dr. Lang attended a RELAMPAGO-CACTI reception at the U.S. Embassy, where he met with the U.S. Ambassador to Argentina, Edward C. Prado.

RELAMPAGO-CACTI occurred in the Cordoba province of Argentina during November 2018 to April 2019, and successfully observed some of the strongest thunderstorms on Earth. The multinational project is supported by the National Science Foundation and U.S. Department of Energy, with important contributions from NASA and the National Oceanic and Atmospheric Administration. Logistical support was provided by the U.S. Department of State. Key Argentinian partners included the Servicio Meteorologico Nacional (SMN), Universidad de Buenos Aires (IBA), and Universidad Nacional de Cordoba (UNC).

"Subtropical South American Hailstorm Characteristics and Environments" Article Published in Monthly Weather Review

An article titled "Subtropical South American Hailstorm Characteristics and Environments" has been published in Monthly Weather Review, with authors Zachary Bruick (Colorado State University), Kristen Rasmussen (Colorado State University), and Daniel Cecil (MSFC/ST11).  The article uses methods developed by Cecil to identify potential hailstorms based on NASA Satellite data and to assess the likelihood of large hail from each storm. Those methods were applied to parts of Argentina, Paraguay, Brazil, and Uruguay, where intense thunderstorms are common, but ground-based observational data are limited.  A broad diurnal cycle was found, with hailstorms extending later into the night than in other regions.  Environmental atmospheric conditions accompanying the hailstorms were documented, with anomalously warm and moist low levels contributing to thermodynamic instability, together with strong upper- and lower-level jets providing dynamic support for the storms.

hailstorms in South America

Anomaly fields for the atmospheric environments on days likely to have severe hailstorms in subtropical South America, compared to other days with significant convection, but not likely to include severe hailstorms. The image shows: (a) Surface pressure, with lower pressure in blue; 500-hPa geopotential height contoured. (b) Surface temperature, with warmer temperature in red; surface dew point contoured. (c) 850-hPa wind vectors and specific humidity, with moisture in green; meridional wind speed contoured (dashed contours are wind from the north). (d) 250-hPa wind speed, with orange for winds from the east and purple for winds from west; 250-hPa geopotential height contoured. All fields plotted are anomalies, for hail-days minus non-hail days.

These findings are significant because the Northern Argentina-Southern Brazil-Paraguay-Uruguay region has some of the most intense thunderstorms on Earth, as indicated by multiple NASA satellite datasets.  Ground-based observational networks are more limited there than in the United States, where intense thunderstorms also occur.  Understanding both similarities and differences between severe thunderstorm behavior and environments in different parts of the world can lead to a better understanding (and ultimately, better prediction) of severe thunderstorms and associated weather hazards (hail, damaging wind, tornadoes).

To read the article, go to:

Science Coordination Office (SCO) Team Members Meet with King of Bhutan

On November 1, 2018, Mr. Tony Kim (SERVIR Project Manager) and Dr. Ashutosh Limaye (SERVIR Chief Scientist) participated in a meeting with the King of Bhutan and Dr. Eugene Tu, NASA Ames Research Center (ARC) Director, when His Majesty, Jigme Khesar Namgyel Wangchuck visited ARC.

Mr. Kim and Dr. Limaye were given the opportunity to share an overview of NASA's SERVIR, Develop, and Global Learning and Observation to Benefit the Environment (GLOBE) projects, and how the funding from the new Inter-Agency Agreement with the DoS can help capacity building in the Kingdom of Bhutan.

Bhutan 1
Bhutan 2

Southern Africa Development Community's (SADC) Climate Service Center Using SERVIR Products for Improved Meteorological Analysis

The Southern Africa Development Community's (SADC's) Climate Service Center (CSC) is now using Early Warning Explorer (EWX) and Climate Hazard InfraRed Precipitation with Stations - Global Ensemble Forecast System (CHIRPS-GEFS) to help produce their meteorological, environmental, hydro-met, and historical analysis products for risk management and mitigating climate extremes for end users, including national meteorological services in the regions and for partners such as the United Nations World Food Programme (WFP), the Food and Agriculture Organization (FAO), and the International Red Cross.

A series of workshops held in 2018 and 2019 focused on training potential users to access, validate, and apply EWX data. After the September 2018 training in Lusaka, Zambia, the country's Meteorological Department now uses EWS to produce official weather bulletins for farmers and other regional users.

EWX Training in Lukasa, Zambia
EWX Training in Lukasa, Zambia

EWX, developed by Dr. Shraddhan Shukla's Applied Sciences Team Project, has been fully transitioned to SERVIR - Eastern and Southern Africa at the Regional Centre for Mapping of Resources for Development (RCMRD) and CHIRPS-GEFS forecasts were integrated into EWX. Through the EWX portal, the CSC is able to access the CHIRPS data to generate monthly and seasonal rainfall assessments and historical climate extreme indices.

SERVIR-West Africa Hosts Cloud Computing and Big Data Forum in Accra, Ghana


SERVIR-Hindu Kush Himalaya Hosts Regional Knowledge Forum on Early Warning Systems


On October 21-25, SERVIR-West Africa hosted a Cloud-Computing and Big Data Forum as a part of the Africa Geospatial Data and internet Conference in Accra, Ghana. The week was book-ended with opening remarks from Ambassador Stephanie Sullivan, the US Ambassador to Ghana, and a keynote address from Marshall Space Flight Center's Dan Irwin, Program Manager of SERVIR.  The event consisted of presentations from a wide range of representatives from academia to the private sector all focused around how cloud-computing can be beneficial to Africa, as well as the challenges and how to overcome them.  The event ended with clearly identified takeaways and next steps for cloud computing and big data in West Africa.

A press release on the event can be found at


SERVIR-Hindu Kush Himalaya (SERVIR-HKH) hosted the Regional knowledge Forum on Early Warning for Floods and High-Impact Weather Events on October 22 and 23, at the International Centre for Integrated Mountain Development (ICIMOD), the hub host consultation workshop, as well as a day of internal SERVIR conversations.  The Department of Hydrology and Meteorology (DHM, Nepal), the Flood Forecasting and Warning Center (FFWC, Bangladesh), North Eastern Space Applications Centre (NESAC, India), and the National Center for Hydrology and Meteorology (NHCM, Bhutan) discussed challenges to Early Warning Systems (EWS) in the region, including specific recommendations for improving the utility of SERVIR's High Impact Weather Assessment Toolkit (HIWAT) system, co-developed by SERVIR-HKH and an applied Sciences Team led by Dr. Patrick Gatlin (MSFC). In his presentation during the stakeholder workshop, the representative from NCHM (Bhutan) expressed high interest in being more involved with SERVIR, specifically extending HIWAT coverage and other existing services to include Bhutan.  During the forum, it was suggested that the way forward for implementing SERVIR EWS includes collaboration between all countries on validation of the products, and the use of the SERVIR-provided Hydrostat tool.


Global Hydrology Resource Center (GHRC) Successfully Migrates its Operations to the Commercial Cloud

To address the challenge of managing data from several upcoming large missions, NASA's Earth Observing System Data and Information System (EOSDIS) is seeking to utilize the commercial cloud.  Toward that end, GHRC was selected as the first Distributed Active Archive Center (DAAC) to fully migrate to the commercial cloud.  One of the reasons GHRC was selected as the first DAAC to fully migrate to the cloud was due to its history of managing data from a wide variety of sources including satellite missions, field campaigns, and science investigators.

In 2017, GHRC provided requirements and DAAC expertise for Cumulus, an EOSDIS developed re-usable, open source, cloud native framework for data ingest, archive, and processing.  After a yearlong successful prototype of Cumulus, GHRC was selected to fully migrate to cloud and serve as a pathfinder DAAC.  GHRC was involved in providing requirements, planning new features, deploying features, and collaboratively solving issues with the EOSDIS team using the scaled agile framework (SAF3) methodology.

A simplified GHRC data publication architecture in the NASA-compliant cloud platform.
A simplified GHRC data publication architecture in the NASA-compliant cloud platform.

At the end of 2019, GHRC successfully completed migration of its operations to the cloud on time and on budget without disrupting its existing day-to-day operations.  As a result, all of GHRC's data is now being distributed from cloud.  GHRC deployed its data publication workflows for backup restoration, on-going datasets, and new datasets to the NASA-compliant General Application Platform (NGAP), a NASA security compliant platform used for hosting EOSDIS applications. Several members of the GHRC team are now trained to operate Cumulus hosted in NGAP. Lessons learned, as part of the migration, have been documented for future migration of other DAACs to the commercial cloud.

disasters logo white

MSFC Disasters Team led response efforts to wet spring and summer across Midwest.

The MSFC Disasters Team led response efforts for the broader NASA Earth Science Disasters Program throughout the spring and summer as floodwaters impacted portions of the Midwest multiple times.

MSFC Disasters coordinators worked with multiple federal agencies such as the Federal Emergency Management Agency (FEMA), the National Guard Bureau (NGB), and the United States Department of Agriculture (USDA) to understand their needs as the floods evolved and worked with them to provide derived products that could help them with situational awareness. In addition to coordinating with these agencies and other NASA Disaster coordinators across various centers, the MSFC team was able to produce satellite derived water extents from multiple sensors.

MSFC derived water extents across Midwest from Sentinel Satellites
MSFC derived water extents across Midwest from Sentinel Satellites

The water extents are derived from satellite imagery and an ancillary dataset, such as land-classification.  MSFC's methodology calculates statistics on known water in the images and then uses those statistics to classify all water in the image.  The land classification is then used again to identify which areas should be water and which areas are now anomalous water (i.e. flooded).  The picture above shows an aggregate of multiple days of acquisitions of the MSFC derived water extents across parts of the Midwest from Sentinel-1 and Sentinel-2 satellites in late March 2019.  The USDA provided feedback to the program stating that the "water extents helped them with their creation of quantitative and qualitative products for a near real-time response at the request of the NASS Nebraska Regional Field Office as well as the NASS Agricultural Statistics Board in preparation for the March Prospective Plantings Report." These areas experienced several more flooding events and severely impacted the 2019 growing season.  The MSFC Disasters team continues to follow up with USDA to understand the limitations of the water extents to improve the product for the next time flooding occurs.

More about the NASA Disasters Program can be found here:

Artificial Intelligence developed to detect smoke plumes in geostationary satellite imagery.

The Interagency Implementation and Advanced Concepts Team (IMPACT) housed within Marshall's Earth Science Branch is applying artificial intelligence (AI) to devise new satellite data analysis techniques.  A recent example is the use of deep learning to enhance the detection of smoke plumes from geostationary satellite measurements.

Traditional satellite-based smoke detection relies upon multispectral techniques that can be clouded by features with similar spectral characteristics (e.g., in the visible range, clouds, dust, pollution and smoke). Additionally, this spectral analysis requires large data volumes and often subjective and time-consuming manual evaluation, which is not readily scalable. To address these weaknesses, an automated, deep learning based detection model capable of identifying smoke plumes using shortwave reflectance from the Geostationary Operational Environmental Satellite (GOES) Series R Advanced Baseline Imager (ABI).

In a recent study, IMPACT data scientists used a large number of satellite images with known smoke plumes obtained from a subset of GOES-16 observations between 2017-2019 to train a convolutional neural network (i.e., machine learning algorithm) to predict the probability that GOES-R ABI shortwave reflectance pixel contains smoke. The image on the right gives two examples of GOES-16 satellite pseudo true color images (top: 2345 UTC 19 May 2018: bottom: 2230 UTC 2 March 2018) and regions where the algorithm identified smoke plumes (yellow shaded regions). The model is able to detect smoke over open ocean and most land surfaces, including snow and urban areas, as well as distinguish the smoke plumes from most types of clouds. Compared with the non-training sample of GOES-16 images, accuracy of the smoke detection model is 92%. This GOES-based smoke detection is being integrated by IMPACT into an online web portal for operational detection and analysis of smoke, among other Earth Science phenomena.

Click on the link below to find out more about the IMPACT Project Office at Marshall Space Flight Center.


Impact Logo 2
GOES-R w Logo
Smoke Plumes

Marshall Earth Science Research & Analysis tapped for innovative extreme weather capacity building solutions.

A SERVIR Applied Science Team project led by Dr. Patrick Gatlin at Marshall Space Flight Center (MSFC) has brought together numerical weather prediction from the Short-Term Prediction Research and Transition Center (SPoRT), satellite-based storm assessment from the Global Precipitation Measurement (GPM) mission, and sattelite-based storm damage mapping from MSFC's Disasters Team into one toolkit being used in extreme weather services in Nepal and Bangladesh.

A demonstration of this service took place during the pre-monsoon and monsoon seasons of 2018 and 2019. A significantly damaging hailstorm that occurred on 30 March 2018 over Bangladesh was captured by the High Impact Weather Assessment Toolkit (HIWAT).

The top image on the right shows an example of the brightness temperature measured at 37 GHz with GPM's microwave imager (GMI) used by HIWAT to determine the probability of damaging hail. The two highlighted storms in the next picture have a >95% chance of damaging hail and the final picture shows the giant hailstones observed with these Bangladesh storms. This satellite-based hail probability is a result of recent Passive Microwave (PMW) research at MSFC by Dr. Daniel Cecil.

Find out more about SERVIR's Extreme Weather Service in the Hindu Kush-Himalyan (HKH) region at

Observing severe storms with NASA's GPM constellation of satellites for capacity building in South Asia.
GPM Hail Probability in Bangladesh Storms
Scroll to Top